Anomaly Sequences Detection from Logs Based on Compression
نویسندگان
چکیده
Mining information from logs is an old and still active research topic. In recent years, with the rapid emerging of cloud computing, log mining becomes increasingly important to industry. This paper focus on one major mission of log mining: anomaly detection, and proposes a novel method for mining abnormal sequences from large logs. Different from previous anomaly detection systems which based on statistics, probabilities and Markov assumption, our approach measures the strangeness of a sequence using compression. It first trains a grammar about normal behaviors using grammar-based compression, then measures the information quantities and densities of questionable sequences according to incrementation of grammar length. We have applied our approach on mining some real bugs from fine grained execution logs. We have also tested its ability on intrusion detection using some publicity available system call traces. The experiments show that our method successfully selects the strange sequences which related to bugs or attacking.
منابع مشابه
Recurrent Neural Network Language Models for Open Vocabulary Event-Level Cyber Anomaly Detection
Automated analysis methods are crucial aids for monitoring and defending a network to protect the sensitive or confidential data it hosts. This work introduces a flexible, powerful, and unsupervised approach to detecting anomalous behavior in computer and network logs; one that largely eliminates domain-dependent feature engineering employed by existing methods. By treating system logs as threa...
متن کاملKernel Based Sequential Data Anomaly Detection in Business Process Event Logs
Business Process Management Systems (BPMS) log events and traces of activities during the execution of a process. Anomalies are defined as deviation or departure from the normal or common order. Anomaly detection in business process logs has several applications such as fraud detection and understanding the causes of process errors. In this paper, we present a novel approach for anomaly detecti...
متن کاملMining Invariants from Console Logs for System Problem Detection
Detecting execution anomalies is very important to the maintenance and monitoring of large-scale distributed systems. People often use console logs that are produced by distributed systems for troubleshooting and problem diagnosis. However, manually inspecting console logs for the detection of anomalies is unfeasible due to the increasing scale and complexity of distributed systems. Therefore, ...
متن کاملAnomaly Detection in Log Records
Received Jan 2, 2018 Revised Mar 9, 2018 Accepted Mar 24, 2018 In recent times complex software systems are continuously generating application and server logs for the events which had occurred in the past. These generated logs can be utilized for anomaly and intrusion detection. These log files can be used for detecting certain types of abnormalities or exceptions such as spikes in HTTP reques...
متن کاملMining Console Logs for Large-Scale System Problem Detection
The console logs generated by an application contain messages that the application developers believed would be useful in debugging or monitoring the application. Despite the ubiquity and large size of these logs, they are rarely exploited in a systematic way for monitoring and debugging because they are not readily machineparsable. In this paper, we propose a novel method for mining this rich ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1109.1729 شماره
صفحات -
تاریخ انتشار 2011